AIIUNITConversions.COM

Free Professional Conversion Tools

Electrical Conversion Chart

Power Conversions

Common conversions between different units of electrical power.

Power Unit	Equivalent in Watts (W)	Equivalent in Kilowatts (kW)	Equivalent in Horsepower (hp)
1 Watt (W)	1 W	0.001 kW	0.00134 hp
1 Kilowatt (kW)	1,000 W	1 kW	1.34 hp
1 Horsepower (hp)	746 W	0.746 kW	1 hp
1 Megawatt (MW)	1,000,000 W	1,000 kW	1,340 hp
1 BTU/hour	0.293 W	0.000293 kW	0.000393 hp

Energy Conversions

Common conversions between different units of electrical energy.

Energy Unit	Equivalent in Joules (J)	Equivalent in Watt- hours (Wh)	Equivalent in Kilowatt- hours (kWh)
1 Joule (J)	1 J	0.00028 Wh	2.78 × 10⁻² kWh

1 Watt-hour (Wh)	3,600 J	1 Wh	0.001 kWh
1 Kilowatt- hour (kWh)	3,600,000 J	1,000 Wh	1 kWh
1 Megajoule (MJ)	1,000,000 J	277.78 Wh	0.278 kWh
1 BTU	1,055 J	0.293 Wh	0.000293 kWh

Voltage, Current, and Resistance Relationships

Common relationships based on Ohm's Law (V = IR) and Power (P = VI).

 $V = I \times R$ $I = V \div R$ $R = V \div I$ $P = V \times I$ $P = I^2 \times R$

 $P = V^2 \div R$

Voltage (V)	Current (A)	Resistance (Ω)	Power (W)
120 V	10 A	12 Ω	1,200 W
230 V	5 A	46 Ω	1,150 W
12 V	2 A	6 Ω	24 W
5 V	1 A	5 Ω	5 W
48 V	20 A	2.4 Ω	960 W

_ - - - -

. . .

Appliance	Typical Power (W)	Typical Power (kW)	Energy per Hour (kWh)
LED Light Bulb	10 W	0.01 kW	0.01 kWh
Laptop Computer	50 W	0.05 kW	0.05 kWh
Refrigerator	150 W	0.15 kW	0.15 kWh
Microwave Oven	1,200 W	1.2 kW	1.2 kWh
Electric Kettle	1,500 W	1.5 kW	1.5 kWh
Air Conditioner (Window)	1,200 W	1.2 kW	1.2 kWh
Electric Water Heater	4,000 W	4 kW	4 kWh

_- . __

--- . .

Conversion Formulas

Power Conversions:

- Watts to Kilowatts: kW = W ÷ 1,000
- Kilowatts to Watts: W = kW × 1,000
- Watts to Horsepower: hp = W ÷ 746
- Horsepower to Watts: W = hp × 746
- Kilowatts to Horsepower: hp = kW × 1.34
- Horsepower to Kilowatts: kW = hp × 0.746

Energy Conversions:

- Joules to Watt-hours: Wh = $J \div 3,600$
- Watt-hours to Joules: J = Wh × 3,600
- Watt-hours to Kilowatt-hours: kWh = Wh ÷ 1,000

- Kilowatt-hours to Watt-hours: Wh = kWh × 1,000
- Energy (kWh) = Power (kW) × Time (hours)
- Energy (Wh) = Power (W) × Time (hours)

International Voltage Standards

Region	Residential Voltage	Frequency
North America	120 V	60 Hz
Europe, Asia, Africa, Australia	230 V	50 Hz
United Kingdom	230 V	50 Hz
Japan	100 V	50/60 Hz

Note: For AC circuits, apparent power (VA) and real power (W) differ by the power factor (PF), where $W = VA \times PF$.

© AllUnitConversions.com - Free Professional Conversion Tools

This chart is for reference only. For precise calculations, consider factors like efficiency, power factor, and tolerance.